
IJSRST2018021 | Accepted : 10 March 2018 | Accepted : 23 March 2018 | March-April-2018 [(4) 7 : 1378-1387]

© 2018 IJSRST | Volume 4 | Issue 7 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

1378

Retrieval of Best Fit Software Component Using Genetic

Algorithm
*1Ramu Vankudoth, 2Dr. P. Shireesha

*1Department of Computer Science, Kakatiya University, Warangal, Telangana, India
2Department of Computer Science and Engineering, Kakatiya University, Warangal, Telangana, India

ABSTRACT

Software reuse is the use of current software components' engineering expertise or concepts for the

development of a new system. Many working products can be reused, including source code, designs,

requirements, architecture and documentation. Source code is the most commonly used product for software

reuse. Software reuse provides the basis for dramatic quality and reliability enhancements and a lengthy-term

decline in software development and maintenance costs. Additional advantages of reuse include increased

interoperability and support for rapid prototyping. To enhance the practicality of the reuse of software, you

need to know where you are and understand the reusable component. Software reuse repositories with

effective representation of software components must be developed. These repositories must allow the

developer to very easily locate and retrieve the components as needed. Much of knowledge recovery research

and development is designed to improve the efficacy and quality of recovery.

Keywords : Component Classification, Genetic Algorithm, Reusable Components, Reuse

I. INTRODUCTION

Software reuse is the use of engineering knowledge or

artifacts from existing software components to build a

new system. There are many work products that can

be re used, for example source code, designs,

specifications, architectures and documentation. The

most common reuse product is source code. Software

reuse is an important area of software engineering

research that promises significant improvements in

software productivity and quality. Successful reuse

requires having a wide variety of high quality

components, proper classification and retrieval

mechanisms. Effective software reuse requires that the

users of the system have access to appropriate

components [9]. The user must access these

components accurately and quickly, and if necessary,

be able to modify them. Component is a well-defined

unit of software that has a published interface and can

be used in conjunction with components to form

larger unit .Reuse deals with the ability to combine

independent software components to form a larger

unit of software. To incorporate reusable components

into a software system, programmers must be able to

find and understand them. Classifying software allows

re users to organize collections of components into

structures so that they can be searched easily. Most

retrieval methods require some kind of classification

of the components. The classification system will

become outdated with time and new technology. Thus

the classification system must be updated from time to

time affecting some or all of the components due to

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1379

the change and hence it needs a reclassification. This

project mainly focuses on implementation of a

software tool with a new integrated classification

scheme, to classify and build a comprehensive reuse

repository. Software reuse is recognized as an effective

way of increasing the quality and productivity of

software systems. Software reuse greatly reduces the

effort, development time and costs. Software reuse is a

technique of software engineering, which uses

existing software components to develop to develop

new system. Component Based Software Engineering

(CBSE) is an established area of software engineering.

In Section 2 Related Work and Section 3 and 4

proposed work, Result Discussion.

II. LITERATURE SURVEY

Existing Classification Techniques: Previously, four

different classification techniques were used to

construct a repository reuse [1]

1. Classification of Free Text: The Free Text Recovery

quest uses the text in the documents. Usually the

recovery method is based on a keyword search [8]. All

the document indexes are checked to try to find a

suitable keyword entry. The biggest downside of this

approach is the uncertainty of the keywords used.

Another downside is that I am looking many

components that are meaningless. The "grep" utility

used by the UNIX manual system is a common

example of free text retrieval. This method of

classification produces high overheads when the

content is indexed and when the time for a query is

taken. Each of the documents relating to the item [3]

has an index of the related text (usually file headers)

and must then be searched from beginning to end

when the question is made.

2. Enumerated Classification: The classification

enumerated uses a number of mutually exclusive

classes which are all in a single dimension hierarchy

[6]. The Dewey Decimal framework for classifying

books in a library is a prime example of this. Every

topic area, e.g. Biology, chemistry etc. have their own

code of classification. As a sub code, this is a

specialized subject in the main topic. These codes can

be sub-coded by the author again. The scheme of

classification enables a user to find more than one

item within the same section / subsection, supposedly

if there is more than one item [4]. For example, there

may be more than one book, each written by a

different writer, about a specific subject. This form is a

one-dimensional classification scheme that will not

allow for more than one flexible classification of

components. The classification mentioned alone does

not therefore provide a good classification scheme for

reusable software components.

3. Attribute value classification: The classification

scheme for attributes utilizes a number of attributes to

classify one component For example: a book contains

numerous attributes such as the author, the publisher,

a specific ISBN number and the Dewey Decimal

system classification code. These are just an example

of the attributes. The attributes may be the number of

pages, the height, the type of printed face, the date of

publication etc., depending on who wishes to provide

knowledge about a book. Obviously, the attributes of

a book can be: The book can be graded

multidimensional in different locations using different

attributes. Bulky, All possible attribute variations

could reach several tens, which at classification time

could not be learned.

4. Faceted Classification: Faceted classification systems

are the most important in the reuse of software. Like

the attribute classification method, different facets

classify components, but typically there are far less

facets than possible attributes. Ruben Prieto-Diaz [2 ,8]

has suggested a six-facetted system.

* The functional facets are: Function, Objects and

Medium.

• The environmental facets are: System type,

Functional area and Setting. In Faceted classification

components, a number of terms or facets are defined.

Facets are identical to the system of the attribute value.

With facets, however, the choice of values is minimal.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1380

This removes the issue of uncertainty in evaluating a

word or attribute's best value [7]. The permissible

values of "Operating Machine" could include DOS,

Windows, MVS and OS/2. Search efficiency can be

very good with this classification. Frakes and Poles

have performed an inquiry into the most

advantageous of those classification approaches within

the software reuse group quite frequently.

III. PROPOSED APPROACH

Retrieval of knowledge from the archive of

components is a repetitive process. The repository size

is normally very high. The repository contains a large

number and specification of components. Repository

is the relation between reuse developments in which

the components are manufactured and reused in

which components are reused. To reuse the

components of the repository effectively, the selection

of the correct recovery technique is important.

Different linear search-based retrieval techniques for

information retrieval are available. We use the

attribute classification scheme for classification and

retrieval of software components in the proposed

system. Each component is stored with the specified

attributes in a repository.

We consider those attributes for the classification and

retrieval of software components from reuse

repositories in the proposed approach. Optimizing the

solutions found is one of the main problems in the

work being considered. Different soft computing

techniques for optimising are available. One of the

soft computing techniques that can be used to solve

this problem is genetic algorithms. Genetic algorithms

are algorithms for search and optimization based on

natural genetic mechanics and natural selection.

Genetic algorithms are somewhat different from most

conventional methods of optimizing [5]. The genetic

algorithms achieve the best solution by randomly

interchanging information between increasingly fit

samples and adding an independent random change

probability. Genetic algorithms benefit from the old

experience of the parent population to produce new,

better performing solutions. Genetic algorithms are

iterative methods that each step generates new

populations. A new population is produced by means

of performance assessment, selection procedures,

recombination and survival from an established

population. These processes proceed until the

population is located and the optimal solution or some

other stop condition is achieved. The proposed

framework is a reuse repository classification and

retrieval of software components.

Fig: 2.1 Diagram of the proposed approach

1. Algorithm

2. Gencomp1 Begin

3. Create an initial N population for evaluation.

4. Defines an effective fitness function for

individuals.

5. Carrying out genetic operations to generate

offspring (crossover and mutation).

6. Analyze the fitness of each individual.

7. Select N superior individuals to form the next

generation according to their fitness values.

8. If the end criterion is not fulfilled, go to step 3,

stop the algorithm End otherwise.

Description of Genetics: The component's genetic

description includes the vector encoding component

and weight vectors. Seven attributes are assigned to an

item in the repository. In the application of genetic

algorithms, we only consider three main component

attributes and assign weights based on the significance

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1381

of the attribute values. The attribute weights vary

from 0 to 1. On the initial population, genetic

operators are applied. The initial population is

randomly generated. This involves a genetic pool that

represents a number of possible solutions. There are

three genes or attributes for each chromosome in the

population. Each gene has its own weights. After the

population is initialised, the objective chromosome

role defines how the chromosome is suited for each

issue and which chromosomes can survive in the next

generation. Genetic algorithms have the objective

purpose to be optimised using the genetic method. It

is very important to choose an acceptable objective

function.

Fitness value is evaluated for each individual in the

population as


=

10

1i

iiVGa

Wj indicates weight vector that matches the vector

attribute, where j indicates the total number of

attributes of each chromosome, i.e., 3. The value of

the objective function must be maximised to achieve

the best component. Generally, with each generation,

the objective role values increase. Genetic Algorithm

Operations: The crossover operation gives offspring to

two preferred individuals in the population by sharing

some bits between them. The offspring therefore

retains certain features of each parent. The mutation

operation produces offspring by a random alteration of

one or more bits. Offspring may also have different

characteristics than their parents. Mutation eliminates

local searches of the search area and raises the

probability that optimal solution will be identified.

The selection operation selects survival descendants in

compliance with pre-defined guidelines. This holds

the population size stable and brings a high possibility

of good offspring into the next generation. When

using genetic algorithms to solve a problem, the first

step is to identify a picture that describes the problem

states. The most popular way of doing this is with the

bit string. An initial population is then established and

the next generation is generated by three genetic

operations (crossover, mutation and selection). During

the entire evolutionary process conventional genetic

algorithms use a single crossover operator and a single

mutation operator. This procedure is repeated until

the criterion of termination is satisfied.

IV. RESULT AND DISCUSSION

Example for dry run of the algorithm: Assuming the

input given by user is “Vb.Net” as “Programming

Language”. By attribute classification technique the

most relevant components are as follows:

1. Linear Search

2. Binary Search

3. Armstrong

4. Fibonacci

5. Palindrome

6. Weighted rank

7. Bubble sort

8. Linear sort

9. Factorial

10. Merge sort

11. Quick sort

These 11 components are encoded and respective weights are assigned as follows:

Components
Component

Encoding

Attribute Weight Vector

W1 W2 W3

C0 0000 0.1 0.8 0.2

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1382

C1 0001 0.2 0.8 0.3

C2 0010 0.4 0.8 0.1

C3 0011 0.1 0.8 0.5

C4 0100 0.8 0.8 0.8

C5 0101 0.8 0.8 0.6

C6 0110 0.6 0.8 0.7

C7 0111 0.5 0.8 0.2

C8 1000 0.7 0.8 0.1

C9 1001 0.5 0.8 0.8

C10 1010 0.2 0.8 0.4

According to the Genetic Algorithm random components C0, C2, C6, C8, C9, C10 are selected for first iteration

and steps of the Genetic Algorithm are applied as follows:

Table 2: Iteration 1

Components
Components

Encoding

Fitness

Function

Value(f)

PSelect

Actual

count

from

Roulette

Wheel

Mate

random

selection

Mating pool

after

reproduction

Crossover

Size

(randomly

selected)

New

Population

C0 0000 1.1 0.694 0 C6 0110 2 0101 (C5)

C2 0010 1.3 0.821 0 C9 1001 2 1010 (C10)

C6 0110 2.1 1.326 2 C6 0110 2 0100 (C4)

C8 1000 1.6 1.010 1 C8 1000 2 1010 (C10)

C9 1001 2.0 1.263 2 C9 1001 2 1010 (C10)

C10 1010 1.4 0.884 1 C10 1010 2 1001 (C9)

Total Fitness (∑f) =9.5 Average Fitness (∑f / 6) = 9.5 / 6 =1.583

Table 3: Iteration 6

Components
Components

Encoding

Fitness

Function

Value(f)

PSelect

Actual

count

from

Roulette

Wheel

Mate

random

selection

Mating pool

after

reproduction

Crossover

Size

(randomly

selected)

New

Population

C4 0100 2.4 1 1 C4 0100 2 0100 (C4)

C4 0100 2.4 1 1 C4 0100 2 0100 (C4)

C4 0100 2.4 1 1 C4 0100 2 0100 (C4)

C4 0100 2.4 1 1 C4 0100 2 0100 (C4)

C4 0100 2.4 1 1 C4 0100 2 0100 (C4)

C4 0100 2.4 1 1 C4 0100 2 0100 (C4)

Total Fitness (∑f) = 14.4 Average Fitness (∑f / 6) = 14.4 / 6 =2.4

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1383

As the average fitness value after successive iterations is converged within a difference of 0.01, so the genetic

algorithm process will be stopped. The best fit component obtained is C4 with fitness value of 2.4. Decoding C4

we get “Palindrome” as the “Best Fit Component.”

The table 4.1 describes initial population of genetic algorithm process. Initial population is created by choosing

components randomly from all retrieved relevant components. In this experiment C0, C1, C4, C6, C9, C12

components are chosen for initial population and are shown in column one.

Component

s

Component

s Encoding

Fitness

Functio

n

Value(f)

PSelec

t

Actual

count

from

Roulett

e

Wheel

Mate

random

selectio

n

Mating pool

after

reproductio

n

Crossover

Size

(randoml

y

selected)

New

Populatio

n

C0 0000 1.1 0.58 0 C4 0100 2 0100 (C4)

C1 0001 1.3 0.62 0 C6 0110 2 0100 (C4)

C4 0100 2.4 1.27 2 C4 0100 2 0110(C6)

C6 0110 2.1 1.11 2 C6 0110 2 0101 (C5)

C9 1001 2.1 1.11 1 C9 1001 2 1010 (C10)

C12 1100 2.3 1.22 1 C12 1100 2 1100 (C12)

Total Fitness (∑f) = 11.3 Average Fitness (∑f / 6) = 11.3 / 6 =1.88

Table 4(a) Iteration 1 of GA Process

New population generated in the first iteration is taken as input to process second iteration. Here the new

population components are C4, C5, C6, C10 and C9. From initial population set C0, C1, C9 components are

eliminated and two new components are added (C5 and C10) to the set. Genetic operators are applied and

calculated average fitness value is 1.88 shown in table 4(a).

Component

s

Component

s Encoding

Fitness

Functio

n

Value(f)

PSelec

t

Actual

count

from

Roulett

e

Wheel

Mate

random

selectio

n

Mating pool

after

reproductio

n

Crossover

Size

(randoml

y

selected)

New

Populatio

n

C4 0100 2.4 1.12 2 C4 0100 2 0100 (C4)

C4 0100 2.4 1.12 2 C4 0100 2 0101 (C5)

C5 0101 2.2 1.03 1 C5 0101 2 0100 (C4)

C6 0110 2.1 0.98 0 C4 0100 2 0100 (C4)

C10 1010 1.4 0.65 0 C4 0100 2 0100 (C4)

C12 1100 2.3 1.07 1 C12 1100 2 1100(C12)

Total Fitness (∑f) = 12.8 Average Fitness (∑f / 6) = 12.8 / 6 =2.13

Table 4(b) Iteration 2 of GA Process

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1384

New population is generated using genetic algorithm in the second iteration as shown in table 4(b). The new

population components are (C4, C5 and C12). This time C6 and C10 are eliminated and C4, C8 are added. The

average fitness value in this iteration is 2.13.

Component

s

Component

s Encoding

Fitness

Functio

n

Value(f)

PSelec

t

Actual

count

from

Roulett

e

Wheel

Mate

random

selectio

n

Mating pool

after

reproductio

n

Crossover

Size

(randoml

y

selected)

New

Populatio

n

C4 0100 2.4 1.02 2 C4 0100 2 0100(C4)

C4 0100 2.4 1.02 1 C4 0100 2 0100(C4)

C4 0100 2.4 1.02 1 C4 0100 2 0100(C4)

C4 0100 2.4 1.02 1 C4 0100 2 0100(C4)

C5 0101 2.2 0.93 1 C4 0100 2 0100(C4)

C12 1100 2.3 1.97 0 C4 0100 2 0100(C4)

Total Fitness (∑f) = 14.1 Average Fitness (∑f / 6) = 14.1/ 6 =2.35

Table 4(c) Iteration 3 of GA Process

Again new population is generated using genetic algorithm in the third iteration as shown in table 4(c). This

time C5 and C12 are eliminated. The Genetic Algorithm now converges at C4 component. The average fitness

value in this iteration is 2.35.

Component

s

Component

s Encoding

Fitness

Functio

n

Value(f)

PSelec

t

Actual

count

from

Roulett

e

Wheel

Mate

random

selectio

n

Mating pool

after

reproductio

n

Crossover

Size

(randoml

y

selected)

New

Populatio

n

C4 0100 2.4 1 1 C4 0100 2 0100(C4)

C4 0100 2.4 1 1 C4 0100 2 0100(C4)

C4 0100 2.4 1 1 C4 0100 2 0100(C4)

C4 0100 2.4 1 1 C4 0100 2 0100(C4)

C4 0100 2.4 1 1 C4 0100 2 0100(C4)

C4 0100 2.4 1 1 C4 0100 2 0100(C4)

Total Fitness (∑f) = 14.4 Average Fitness (∑f / 6) = 14.4 / 6 =2.4

Table 4(d) Iteration 4 of GA Process

The population set with only one component C4

(highest fitness value) is taken as input to process

iteration 4.In this iteration average fitness value

generated is 2.4 as shown in table 4(d)

When the Genetic algorithm process is completed, the

output of GA process is the most relevant component.

That is the highly fitted component is generated from

all relevant software reusable components. In the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1385

above sample experimentation the most relevant

component is C4 with the highest fitness value 2.4.

As the average fitness value after successive iterations

is converged within a difference of 0.01, therefore the

genetic algorithm process will be stopped.

Graphs:

The results obtained in the experiment conducted in

the previous section are graphically presented and

analysed in this section. The following graph shows

the variations in component fitness of all GA process

iterations. The fitness variations of the components

are reduced from iteration 1 to iteration 6. Fitness

values for components range from 1.1 to 2.4. Only one

component fitness value 2.4 is available in the last

iteration. This is seen below figure. Figure1 shows

fitness function value changes for all the iterations. It

is evident from the figure that the fitness value

increases with iteration.

Figure 1 Fitness Value vs Iterations

The Figures 4.2 indicates the weight variations in the

first iteration of Genetic algorithm process. In this

iteration of Genetic process the output weights (as per

fitness fuction) are varied from 1.1 to 2.4. All

components are having different fitness values. In the

last iteration weight variation is reduced to zero.

Figure 2 Fitness Value vs Iteration1

The Figures 3 indicates the weight variations in the

second iteration of Genetic algorithm process. In this

iteration of Genetic process the output are varied from

1.4 to 2.4. In this iteration the components with

lowest fitness values (1.1,1.3) are eliminated and new

component (2.2) is added to new population.

Figure 3 Fitness Value vs Iteration2

The Figures 4 indicates the weight variations in the

third iteration of Genetic algorithm process. In this

iteration of Genetic process the output weights are

varied from 2.2 to 2.4. In this iteration the component

with lowest fitness values (2.1 and 1.4) is eliminated

and no new components are added to new population.

Figure 4 Fitness Value vs Iteration3

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1386

The Figures 5 indicates the weight variations in the

fourth iteration of Genetic algorithm process. In this

iteration of Genetic process the output weights are

only with 2.4. In this iteration the component with

lowest fitness values(2.2) is eliminated and no new

components are added to new population.

Figure5 Fitness Value vs Iteration4

As the average fitness value after successive iterations

is converged within a difference of 0.01, therefore the

genetic algorithm process will be stopped. The

component C4 with highest fitness value 2.4 is

survived in all populations of Genetic process.

Therefore the most relevant software reusable

component generated C4.

V. CONCLUSION OF PRESENT WORK

Efficient knowledge retrieval from a repository is

time-consuming and difficult. The reuse of software is

focused on the efficient retrieval of information. In

the absence of an appropriate recovery mechanism,

the software reuse is significantly reduced.

Today, quality software that focuses on cost reduction

is very difficult to build. The reuse of software appears

as one of the best solutions for the industries of

software development. The process of reuse is the

development of new software using existing assets.

The key challenge in building any successful

repository is the component representation in the

repository. The user sets specified component

attributes, and these attributes are used for component

indexing and retrieval. The success of the reuse

software depends on the classification methodology

used to build a repository for software reuse. The

software engineers and other users in the

development of the new software are supported.

The main purpose of the proposed work is to

efficiently identify and retrieve software components

from the repository. The classification scheme for

attributes here is very versatile and simpler to use. In

this work Genetic algorithms are presented very

effectively to find optimal solutions that select the

best fit component from all relevant components. The

framework implemented takes into view the mental

understanding of the user and classifies reusable

components of software along with user knowledge or

experience. In this suggested system, users can just

define the classification scheme attributes of the

repository using their keywords when using the

framework. The system is self-learning as more people

use the system to increase their vocabulary and

ultimately their ability to return components needed

to solve problems. In this work, the modern

integrated classification system is carried out with

extreme precision and precision for the most effective

classification of the best reusable components of

software.

VI. FUTURE SCOPE

Future work involves identifying multimedia software

components and intelligent classification of

components for very efficient component selection.

To be successful, the scheme should be strengthened

in order to meet people's interests. The most

surprising result was that developers are more likely

to look for personal assets than to check for them.

More research is required to clarify the deciding

factors. Work may also be done to determine the

effect of tightening the reuse environment in the

production environment of software developers.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1387

Genetic algorithms may also be combined in order to

refine results with other soft computing methods

(Neural Networks, Ant Colony Optimization).

VII. REFERENCES

[1]. Ben Khalifa, H., Khayati, O., & Ben Ghezala, H.

H. (2008). A behavioral and structural

components retrieval technique for software

reuse. Proceedings of the 2008 Advanced

Software Engineering and Its Applications,

ASEA 2008, 134–137.

https://doi.org/10.1109/ASEA.2008.45

[2]. Burégio, V. A., Almeida, E. S., Lucrédio, D., &

Meira, S. L. (2007). Specification, design and

implementation of a reuse repository.

Proceedings - International Computer Software

and Applications Conference, 1(Compsac), 579–

582.

https://doi.org/10.1109/COMPSAC.2007.195

[3]. Ezran, M., Morisio, M., & Tully, C. (2002).

Reuse Repository. 49–63.

https://doi.org/10.1007/978-1-4471-0141-3_3

[4]. He, J., Li, X., & Liu, Z. (2005). Component-based

software engineering* the need to linie methods

and their theories. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 3722 LNCS(May 2014), 70–95.

[5]. Jalender, B., Govardhan, A., & Premchand, P.

(2014). A Novel approach for classifying

software reusable components for upload and

download. Proceedings of 2014 International

Conference on Contemporary Computing and

Informatics, IC3I 2014, 71–75.

https://doi.org/10.1109/IC3I.2014.7019669

[6]. P, N., & C.V, G. R. (2010). A Mock-Up Tool for

Software Component Reuse Repository.

International Journal of Software Engineering &

Applications, 1(2), 1–12.

https://doi.org/10.5121/ijsea.2010.1201

[7]. Padhy, N., Singh, R. P., & Satapathy, S. C.

(2017). Software reusability metrics estimation:

Algorithms, models and optimization

techniques. Computers and Electrical

Engineering, 69, 1–16.

https://doi.org/10.1016/j.compeleceng.2017.11.0

22

[8]. Pole, T. P. (1994). An Empirical Study of

Representation Methods for Reusable Software

Components. IEEE Transactions on Software

Engineering, 20(8), 617–630.

https://doi.org/10.1109/32.310671

[9]. Poulin, J. S., & Yglesias, K. P. (1993).

Experiences with a Faceted Classification

Scheme in a Large Reusable Software Library

(RSL).

[10]. Prieto-Díaz, R., & Freeman, P. (1987).

Classifying Software for Reusability. IEEE

Software, 4(1), 6–16.

https://doi.org/10.1109/MS.1987.229789

[11]. Rao, C. V. G. (2011). A Multilevel

Representation of Repository for Software

Reuse. Journal of Computer Science, 9(9), 114–

119.

[12]. Ruben Prieto – Diaz. (n.d.). Implementing

faceted Classification for Software Reuse.

[13]. Zozas, I., Ampatzoglou, A., Bibi, S.,

Chatzigeorgiou, A., Avgeriou, P., & Stamelos, I.

(n.d.). Reusability Index: A Measure for

Assessing Software Assets Reusability.

Cite this Article

Ramu Vankudoth, Dr. P. Shireesha, "Retrieval of Best

Fit Software Component Using Genetic Algorithm",

International Journal of Scientific Research in Science

and Technology (IJSRST), Online ISSN : 2395-602X,

Print ISSN : 2395-6011, Volume 4 Issue 7, pp. 1378-

1387, March-April 2018.

Journal URL : http://ijsrst.com/IJSRST2018021

http://ijsrst.com/IJSRST2018021

